Numerical investigation of the elastic scattering of hydrogen (isotopes) and helium at graphite (0001) surfaces at beam energies of 1 to 4 eV using a split-step Fourier method
نویسندگان
چکیده
We report simulations of the elastic scattering of atomic hydrogen isotopes and helium beams from graphite (0001) surfaces in an energy range of 1-4 eV. To this aim, we numerically solve a time-dependent Schrödinger equation using a split-step Fourier method. The hydrogen- and helium-graphite potentials are derived from density functional theory calculations using a cluster model for the graphite surface. We observe that the elastic interaction of tritium and helium with graphite differs fundamentally. Whereas the wave packets in the helium beam are directed to the centers of the aromatic cycles constituting the hexagonal graphite lattice, they are directed toward the rings in case of the hydrogen beams. These observations emphasize the importance of swift chemical sputtering for the chemical erosion of graphite and provide a fundamental justification of the graphite peeling mechanism observed in molecular dynamics studies. Our investigations imply that wave packet studies, complementary to classical atomistic molecular dynamics simulations open another angle to the microscopic view on the physics underlying the sputtering of graphite exposed to hot plasma.
منابع مشابه
Probing the helium-graphite interaction
Two separate lines of investigation have recently converged to produce a highly detailed picture of the behavior of helium atoms physisorbed on graphite basal plane surfaces. Atomic beam scattering experiments on single crystals have yielded accurate values for the binding energies of several· states for both 4He and 'He, as well as matrix elements of the largest Fourier component of the period...
متن کاملThe Comparison of the shares of stopping power in a soft tissue-equivalent material
Introduction: Proton therapy is a type of radiation treatment that it uses protons to treat cancer. Because of the protons’ unique ability to distribute the radiation dose more directly to the tumor, it minimizes the damage to nearby healthy tissues. The rate of energy loss by the ion in the target is called stopping power. The total stopping power is sum nuclear and electroni...
متن کاملThermo-Elastic Damping in Nano-beam Resonators Based on Nonlocal Theory
In this article thermoelastic damping in nano-beam resonators is investigated based on nonlocal theory of elasticity and the Euler-Bernoulli beam assumptions. The governing equation of deflection of the beam is obtained from shear and moment resultants and stress–strain relationship of the nonlocal elasticity model and also the governing equations of thermoelastic damping are established by usi...
متن کاملNumerical Investigation of Rail Bending Behaviour Focusing on the Effect of Track Modulus
Thorough understanding of steel rail response to wheel load is a key step towards design and evaluation of the railway track structure. In current practice, maximum vertical deflection and bending moment are calculated using the theory of infinite beam on continuous elastic foundation (Winkler model), in which the foundation stiffness is assumed as constant. However, variation of track modulus ...
متن کاملAbsolute elastic differential cross sections for electron scattering by C6H5CH3 and C6H5CF3 at 1.5–200 eV: A comparative experimental and theoretical study with C6H6
We present absolute differential cross sections DCS for elastic scattering from two benzene derivatives C6H5CH3 and C6H5CF3. The crossed-beam method was used in conjunction with the relative flow technique using helium as the reference gas to obtain absolute values. Measurements were carried out for scattering angles 15° –130° and impact energies 1.5–200 eV. DCS results for these two molecules ...
متن کامل